Enumeration of set-theoretic solutions to the Yang–Baxter equation
نویسندگان
چکیده
We use Constraint Satisfaction methods to enumerate and construct set-theoretic solutions the Yang-Baxter equation of small size. show that there are 321931 involutive size nine, 4895272 ten 422449480 non-involutive solution eight. Our method is then used biquandles.
منابع مشابه
Retractability of Set Theoretic Solutions of the Yang-baxter Equation *
It is shown that square free set theoretic involutive non-degenerate solutions of the Yang-Baxter equation whose associated permutation group (referred to as an involutive Yang-Baxter group) is abelian are retractable in the sense of Etingof, Schedler and Soloviev. This solves a problem of Gateva-Ivanova in the case of abelian IYB groups. It also implies that the corresponding finitely presente...
متن کاملA Combinatorial Approach to the Set-theoretic Solutions of the Yang-baxter Equation
A bijective map r : X −→ X, where X = {x1, · · · , xn} is a finite set, is called a set-theoretic solution of the Yang-Baxter equation (YBE) if the braid relation r12r23r12 = r23r12r23 holds in X. A non-degenerate involutive solution (X, r) satisfying r(xx) = xx, for all x ∈ X, is called squarefree solution. There exist close relations between the square-free set-theoretic solutions of YBE, the...
متن کاملMatched Pairs Approach to Set Theoretic Solutions of the Yang-baxter Equation
We study set-theoretic solutions (X, r) of the Yang-Baxter equations on a set X in terms of the induced left and right actions of X on itself. We give a characterization of involutive square-free solutions in terms of cyclicity conditions. We characterise general solutions in terms of abstract matched pair properties of the associated monoid S(X, r) and we show that r extends as a solution (S(X...
متن کامل3 M ar 2 00 9 Retractability of set theoretic solutions of the Yang - Baxter equation ∗
It is shown that square free set theoretic involutive non-degenerate solutions of the Yang-Baxter equation whose associated permutation group (referred to as an involutive Yang-Baxter group) is abelian are retractable in the sense of Etingof, Schedler and Soloviev. This solves a problem of Gateva-Ivanova in the case of abelian IYB groups. It also implies that the corresponding finitely presente...
متن کاملCoxeter-like Groups for Groups of Set-theoretic Solutions of the Yang–baxter Equation
We attach with every finite, involutive, nondegenerate set-theoretic solution of the Yang–Baxter equation a finite group that plays for the associated structure group the role that a finite Coxeter group plays for the associated Artin–Tits group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2022
ISSN: ['1088-6842', '0025-5718']
DOI: https://doi.org/10.1090/mcom/3696